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Abstract—Using a general model of a wireless sensor in a
resource-scarce environment, we investigate in this paper how
internal and external parameters affect utility. Three metrics
are proposed to capture the application-specific nature of utility,
and in an effective manner highlight the trade-offs encountered.
We consider a simple energy management policy for the wireless
sensor with two parameters: a value-of-information threshold and
a buffering capacity. Employing the utility metrics, we examine
how this policy may be tailored to different environments by
tuning of its parameters. Furthermore, we conduct an in-depth
study of the parameter sensitivity in an example environment,
and show how such analyses may be used to inform sensor
design. In conclusion, we show that even a simple policy will
exhibit distinctly different modes of operation depending on
parametrisation, and emphasise the importance of a sufficient
understanding of the parameter space in which the system
resides.

Index Terms—Energy management, intelligent sensors, en-
ergy harvesting, condition monitoring, wireless communication,
scheduling algorithms.

I. INTRODUCTION

Ensuring the safety and reliability of transportation infras-
tructure is of paramount importance, as failure to properly
assess the integrity of such structures can lead to the need for
expensive repairs, or in the worst case to catastrophic collapse
and loss of life. As early as 2001, the BRIME project (Bridge
Management in Europe) [1] reported that a substantial number
of bridges in the EU presented deficiencies—with percentages
for France, Germany, the UK, and Norway reported to be
39 %, 37 %, 30 %, and 26 %, respectively. In August 2018,
the effects of improper maintenance were demonstrated with
the collapse of the Ponte Morandi highway bridge in northern
Italy, raising further concerns about the state of infrastructure
all across Europe [2].

In an effort to detect structural degradation and preemptively
correct failures, a significant amount of resources is routinely
expended by road and rail authorities to survey the condi-
tion of infrastructure. Condition monitoring using wireless
sensors has become an increasingly attractive approach to

supplement these maintenance schemes, as the required sensor
hardware has become cheaper, more power-efficient, and more
accurate. For ease of deployment, these systems are often
battery powered, and therefore have a limited life-time. By
employing energy harvesting, the life-time may be increased
substantially. The resulting energy-constrained environment
naturally presents the challenge of how to maximise the
quality-of-service within a tight energy budget. Typically part
of the design process, such optimisation can help inform
the dimensioning of the system to meet desired behaviour
requirements.

Sensor systems will typically be designed to satisfy a certain
requirement specification. In addition to functional require-
ments, a set of performance goals are usually formulated—for
instance in terms of sample rate, latency, or system uptime.
A common technique used in the literature when analysing
systems based on such aggregate metrics is to use an analytic
or stochastic approach to model how parameter changes impact
the behaviour of the system [3]–[9]. This kind of analysis is
powerful and can provide a thorough understanding of the
system under analysis, as it attempts to reveal the underlying
mechanisms that governs system behaviour. However, in the
design phase of a given system, formulating an analytical
model using such aggregate measures can be challenging. And
once a system is modelled and analysed, incorporating new
parameters may require replacing the entire model.

In this paper, we employ an alternative approach where the
system is modelled directly—and as realistically as desired—
after which we perform time-domain simulations across the
parameter space to assess its performance. This has the disad-
vantage that it provides a less direct insight into the underlying,
abstract relationships, since any conclusions will have to be
drawn from simulated empirical data. Nonetheless, it allows
for much finer control over the exact actions and decisions
that the system performs while accounting for the passage
of time. Moreover, this modelling approach is more useful
as a tool for design of IoT systems, as it allows for rapid
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prototyping, gradual inclusion of parameters and metrics, and
targeted, parametric simulations to determine weaknesses and
optimal operating points.

We introduce a model for the data pipeline of a general
wireless sensor and describe the actions the sensor may
take. Three metrics of utility are formulated and used to
gauge the sensor’s performance in terms of quantity, urgency,
and quality. Using this model, we consider a simple energy
management policy with two key parameters: a value-of-
information threshold and a buffering capacity. In the context
of the utility metrics, the resulting system is analysed in a
range of situations and parametrisations, exemplifying both
general design considerations to be aware of, and specific
limitations with the policy used. At the current stage of
research, our work is a preliminary study of this approach
to energy management design. However, the approach has the
potential to be widely employed as part of sensor node design.

II. RELATED WORKS

1) Vibration analysis of bridges: Our instrumentation sce-
nario uses vibration analysis to estimate the structural health
of bridges. This has been shown to be a valid approach, for
instance by using low-cost accelerometers to record vibration
and a damped harmonic oscillation model to estimate the
bridge’s modal parameters [10].

In more general terms, there are three main approaches of
modal analysis of bridges through measurements of vibration.

1) Structure excitation by a controlled, artificial force and
measurement of the corresponding response [11].

2) Measurements of both ambient excitation forces and the
corresponding response [12].

3) Measurement of the bridge’s response exclusively [10],
[13].

To enable ubiquitous monitoring of the vast body of struc-
tures in unsatisfactory condition, only 2) and 3) are practically
and economically viable solutions. Omidalizarandi et al. [13]
argue that given only measurements of bridge responses for
a sufficient length of time, a robust and automatic vibration
analysis procedure can provide adequate results. They describe
how a portion of the measurement data may be selected to
capture the ring-down phase of an induced vibration. This
is the phase in which the structure freely vibrates without
any external forces and thereby exhibits exponential decay
in vibration amplitude. Measurements of this decay allows
estimation of the structure’s modal parameters.

2) Energy management: There is a substantial body of
work in the literature proposing and examining energy man-
agement policies for specific systems, or narrowly defined
models. Among recent solutions, we find statistical quality-of-
service-driven energy control policies developed by Gao et al.
[6] to maximise certain energy harvesting efficiency metrics.
Pan et al. [7] analysed simultaneous wireless information and
power transfer, and derived closed-form expressions of the
statistical properties of the system, validating these expressions
through Monte Carlo simulations. Patil et al. demonstrated in
[8] how an optimal transmission policy could be formulated

for systems where transmission opportunities are externally
determined, and showed that the decision of whether or not to
transmit can be made by comparing the value of the informa-
tion to a threshold dependent on battery state. A stochastic
energy management scheme was formulated by Ahmed et
al. [14] to handle the uncertainty inherent in solar energy
harvesting. Hanschke and Renner [15] proposed an algorithm
to schedule interdependent, atomic tasks to meet timing and
energy constraints, given an energy harvest prediction. Finally,
Draskovic and Thiele introduced in [16] a finite-horizon ap-
proach with the aim of maximising the lifetime of a node while
guaranteeing a minimal energy use.

There is significantly less research regarding more general
techniques for assessing arbitrary wireless sensor systems in
terms of how design parameters affect utility metrics. Niyato
et al. [3] formulated an analytical, probabilistic node model
based on a multidimensional Markov chain to examine the
likelihood of packets being dropped or blocked, using simula-
tion to validate the model. Sharma et al. [4] studied a model of
a wireless sensor with an energy and a data buffer, and analyti-
cally obtained policies that were either optimal with regards to
throughput or with regards to latency. An optimisation strategy
was presented by Moser et al. in [5] for systems employing
energy harvesting, taking into account the uncertainty of future
harvesting yields. Lastly, the inherent trade-off between energy
consumption and measurement accuracy was investigated by
Kraemer et al. [9], who showed how this can be controlled by
the sampling interval.

A common theme for the solutions in the literature is
the usage of abstract or stochastic models in an attempt to
derive analytic, closed-form relationships. While providing
great insight, such methods are of limited applicability during
the design phase of wireless systems due to the complexity
of system modelling. We attempt to present a more useful
approach to this end.

III. SYSTEM MODELLING AND SIMULATION

We consider the the scenario of a wireless sensor placed on
a road or railway bridge. The sensor is to provide information
concerning the bridge’s structural integrity by sampling am-
bient vibration, and to transmit this information to a central
unit wirelessly. The sensor is fitted with a small solar panel
to harvest energy with which to replenish its energy reserves.

Vibration ring-down events are generated by the environ-
ment whenever the bridge is excited by a vehicle and the
induced vibrations are allowed to freely decay. Such events can
be used to estimate the bridge’s modal parameters, and thus
render a certain image of its structural health. The sensor can
sample these ring-down events and assess the degree to which
the signal envelope follows the expected exponential decay.
Aligning with the concept of value-of-information (VoI) [17],
we assume that this assessment results in a score expressing
the potential value of the observation. In a more energy-
intensive task, the sampled vibration event is processed by
a DSP subsystem to estimate the bridge’s modal parameters,
along with a more confident estimate of VoI. Subsequently,
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Fig. 1: A general model of a wireless sensor’s operation from
event generation by the environment to transmission to the
central unit. Each task consumes some energy ES, EP, or ET.

the sensor may transmit these modal parameters to the central
unit.

This behaviour pattern can be generalised to many differ-
ent situations. Conceptually, many Internet-of-Things (IoT)
devices are tasked with condition monitoring by regularly
reporting measurements of some phenomenon to a central unit
by wireless transmission. Such devices are almost exclusively
powered by a limited energy accumulator (e.g., a battery or
supercapacitor), and in many cases employ some form of
energy harvesting. The IoT device is naturally restricted in
terms of energy usage, and will therefore operate according to
some form of energy management policy to determine what to
do at each point in time. As such, the sensor’s decision pattern
should be planned and evaluated to ensure a satisfactory
strategy.

A. System model

The general operation of our wireless sensor can be mod-
elled as shown in Figure 1. The environment of the sensor
will sporadically generate vibration events, which the sensor
can consume a small amount energy to (1) sample, or be
forced to ignore as a result of insufficient energy. Sampling an
event produces a packet of raw measurement data and a crude
estimate of its informational value. The sensor can spend an
additional amount of energy to (2) process a sampled event
in more detail to prepare it for transmission, and get a better
sense of the event’s VoI. Ultimately, the sensor can expend a
large amount of energy to (3) transmit a processed event to
the central unit. At any point in this process, the sensor may
also discard the event.

1) Energy harvesting: The energy harvesting yield of the
device at a given point in time depends on the overall
efficiency of the energy harvesting system and the underlying
energy harvesting potential. Solar energy is employed in this
work, meaning that the effective power P harvested by the
system may be formulated as

P = AηG , (1)

where A is the physical area of the photovoltaic (PV) panel
and η is a measure of the system’s energy harvesting effi-
ciency. G denotes the Global Horizontal Irradiance (GHI), for
which a real-world data set [18] is employed. This data set
contains per-minute averages of GHI at NTNU Gløshaugen in
Trondheim, Norway, which typically peaks around 800 W m−2

for a clear summer day.

The overall energy harvesting efficiency η captures a num-
ber of efficiency coefficients ηi, such as PV panel efficiency,
accumulator charging circuit efficiency, and factors depending
on placement and surroundings.

η =
∏

ηi (2)

In a typical bridge monitoring scenario it may not be feasible
to place the system in direct sunlight. This leads to a reduction
in yield, as the PV panel will mostly harvest ambient sunlight.
For such a system, a reasonable overall efficiency is η = 10−3.

2) Events: Events of the phenomena to be measured are
sporadically generated by the environment, with measurable
data series corresponding to these events available to be
sampled by the system. The event generation is modelled as
a Poisson point process with expected rate λ, such that the
interarrival times between events are exponentially distributed.
Each event represents a vibration ring-down, and is assumed
to be endowed with an intrinsic informational value v that the
system may estimate. In our model, the VoI of an event is
sampled from a standard normal distribution, v ∼ N (0, 1).

3) Sensor: The device is modelled as a wireless sensor with
an energy accumulator state Eacc. The sensor is capable of per-
forming three tasks: sampling, processing, and transmission—
each requiring a certain amount of energy, ES, EP, and ET,
respectively. The tasks are assumed to take a negligible time
to complete. We model the accumulator state as a function of
the harvested energy and the sensor’s energy consumption,

Eacc(t) =

t∫
0

P (τ)−
∑
i∈T

Eiδ(τ − ti) dτ , (3)

where δ(t) is the Dirac delta function, and T is the set of
tasks that the sensor performs. For a task i, ti denotes the
time at which the task was performed and Ei ∈ {ES, EP, ET}
the consumed energy.

The environment sporadically offers events to the sensor,
which determines how to handle each event by some policy.
The sensor may estimate the true informational value v of a
given event, with v̂S and v̂P being the estimates after sampling
(prior to processing) and after processing, respectively. These
estimates have the distribution shown in (4), being modelled as
a sum of the true value v and a zero-mean, normally distributed
estimation error.

v̂S ∼ N
(
v, σ2

S

)
v̂P ∼ N

(
v, σ2

P

)
(4)

4) Energy management policy: An important design con-
sideration is the policy employed by the wireless sensor to
carry out its functions. In this paper, we examine what is
presumably the most natural and straightforward strategy that
could be conceived for this purpose. The policy is myopic
in nature, and will attempt to sample every event as long as
it has sufficient energy to do so. Moreover, the system will
process and transmit a sampled event at the earliest opportunity
permitted by its energy harvesting yield. The policy is VoI-
aware, with a threshold θ that lets it avoid wasting energy
on low-value data; an event will be discarded if either v̂S
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1: procedure POLICY(θ, n)
2: if ev ← TRYSAMPLE and ev.value ≥ θ then
3: INSERTSORTED(B, ev)
4: end if
5: while ev ← GETNEXT(B) do
6: if ev is processed then
7: if success← TRYTRANSMIT(ev) then
8: REMOVE(B, ev)
9: end if

10: else
11: TRYPROCESS(ev)
12: end if
13: SORT(B)
14: FILTER(B, θ)
15: end while
16: TRUNCATE(B,n)
17: end procedure

Fig. 2: A simple energy management policy for wireless sen-
sors, with buffer capacity n and VoI threshold θ. B represents
the sensor’s long-term memory: a buffer preserved between
each run and sorted based on estimates of VoI. The TRY-
procedures will attempt the corresponding action and consume
energy if successful.

or v̂P is less than θ. The finite long-term memory of IoT
devices is captured by a buffer capacity n, which permits the
sensor to store events for which it does not currently have
the required energy to process or transmit. When sufficient
energy is harvested at a later stage, the sensor will handle the
buffered events prioritised by their value estimate. Pseudocode
for the policy is provided in Figure 2, parametrised by the
value threshold θ and buffer capacity n.

B. Utility metrics

The end goal of most IoT designs is to maximise the utility
of the system within its energy budget. Quantifying the utility
of a system, however, can be challenging due to its application-
specific nature. In this paper, the following three metrics are
identified to capture a broad array of common prioritisations,
which may be weighted appropriately depending on the de-
sired behaviour.

• fT: Ratio of generated events that are transmitted
• τ̄ : Average latency from event generation to transmission
• v̄: Average VoI of transmitted events

Respectively, these metrics can be said to represent the quan-
tity, urgency, and quality provided by a given system.

IV. RESULTS AND DISCUSSION

The simulation framework is configured by a number of
parameters; these are listed in Table I, grouped into physical
and policy parameters. Unless otherwise stated, the following
simulations employ the default parameter values listed in the
table. These default values represent a typical wireless sensor,
using a piezoelectric vibration sensor, a microcontroller with
low-power sleep modes, a wireless protocol such as LoRa, and

TABLE I: Simulation parameters and their default values.

Symbol Default Description

G – W m−2 Global horizontal irradiance
A 2.2 cm2 Photovoltaic panel area
η 0.001 Overall energy harvesting efficiency
λ 1.0 h−1 Expected event rate
ES 5 mJ Sampling energy consumption
EP 50 mJ Processing energy consumption
ET 500 mJ Transmission energy consumption
σS 0.3 Standard error of v after sampling
σP 0.1 Standard error of v after processing

θ −∞ Value-of-information threshold
n 5 Buffer capacity

a small photovoltaic panel. The energy harvesting potential G
uses 92 days of data from the summer of 2020, June 1 to
August 31, obtained from the real-world data set [18].

A. General behaviour

Figure 3 illustrates the general behaviour of the sensor over
two consecutive summer days—one clear and one partially
cloudy. The top half of the plot shows the instantaneous
energy harvesting potential, as well as the accumulator level.
The bottom half shows the events that are generated by the
environment, and how the system responds to and handles
these events. The energy management policy is greedy and
short-sighted, and will therefore use all available energy given
that there are a sufficient number of events. This is illustrated
by the fact that after sundown, when the energy harvesting
yield is zero, the sensor expends almost all accumulated energy
by continuing to sample, process, and transmit events. At
certain points in the timeline, some energy goes to waste as
the system samples or processes data which is later discarded
either as a result of the threshold θ, or due to it being displaced
by a more valuable packet in the finite buffer of capacity n.

We may categorise the general behaviour of the sensor at
various points in time into three distinct modes of operation:
(1) an energy-starved mode, (2) an energy-constrained mode,
and (3) an energy-abundant mode.

1) Energy-starved mode: The first of these modes describes
a state in which the sensor is severely curbed by lack of energy,
and does not have sufficient energy to do anything beyond
merely sampling events. If the energy reserves are virtually
empty, the sensor may not even be able to sample events. De-
pending on the environment, this mode is mainly encountered
at night when the remaining energy in the accumulator has
been exhausted and the sensor may not recharge itself due to
the absence of solar energy. We observe this behaviour after
the last packet is transmitted in Figure 3, from 43 to 51 hours.

2) Energy-constrained mode: The second mode of op-
eration is the energy-constrained mode, wherein the sensor
transmits a nonzero number of events, but is forced to delay
and prioritise which events to transmit due to a limited amount
of available energy. We can observe this energy-constrained
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Fig. 3: A two-day excerpt (June 27 to 28, 2020) of a default-parameter simulation showing a typical timeline of the energy
management policy with threshold θ = 0. The different event stages are shown as G (generation), S (sampling), P (processing),
and T (transmission).

mode from 18 to 37 hours in Figure 3. The prioritisation
behaviour is demonstrated by the out-of-order transmissions
from 30 to 37 hours. The order is dictated by the VoI estimates
of the buffered events; an out-of-order transmission occurs
whenever the sensor estimates the value of a later event to
be higher than that of an earlier one, and thus prioritises the
higher-value event in processing and transmission.

3) Energy-abundant mode: Finally, the energy-abundant
mode is characterised by the sensor expending less energy
than it harvests. In this situation, the sensor will be able to
immediately sample, process, and transmit every event which
meets its threshold θ. The mode is shown in Figure 3 between
12 and 18 hours. While this last mode of operation is mainly
seen around peak daylight hours, it can also be caused by a
low number of events occurring.

These modes of operation are transient in nature. However,
we may formulate a mathematical description of environments
in which they are likely to appear. Defining G as the average
of G over the horizon of interest, we can introduce the average
available energy per event, Eα, as shown in (5).

Eα =
AηG

λ
(5)

We may now formulate theoretical bounds describing the long-
term behaviour of the sensor.

ES < Eα < ES + EP + ET (6)

If satisfied, (6) describes a system that—on average—harvests
more energy per event than that consumed by sampling, but
less than that required to fully sample, process, and transmit an
event. This would in the result in energy-constrained operation
over the long-term. The lower and upper bounds of this
inequality designate limits beyond which the sensor would
continuously operate in either energy-starved mode or energy-
abundant mode, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100
ES

ES + EP + ET

Eα [J]

f
T

[%
]

Fig. 4: The transmission ratio fT shown as a function of Eα,
for λ = 1.0 h−1 and increasing A.

Figure 4 demonstrates how the transmission ratio, fT, is
closely tied to Eα and the inequality (6). We observe that
if Eα < ES, no events are transmitted (fT = 0%), while if
Eα > ES +EP +ET, all events are transmitted (fT = 100%).
Between these two extremes is a region wherein fT is linearly
dependent on Eα. In this scenario, the sensor is long-term
operating in the energy-constrained mode, but may alternate
between operating in all three modes in the short-term. The
default environment given by Table I and shown in Figure 3
is of this nature.

B. Policy parametrisation

The energy management policy is parametrised as (θ, n),
with a value threshold θ and a buffer capacity n. In this section,
we will investigate how each of these parameters affects the
three main metrics in isolation, for a selection of PV panel
sizes.

1) Value threshold: Figure 5 shows each metric as a func-
tion of θ. In the upper plot, fT assumes a sigmoid shape for the
energy-abundant scenario (A = 10.0 cm2). Furthermore, we
identify a configuration-specific value θcrit such that all other
configurations ultimately enter the energy-abundant mode and
conform to this sigmoid if θ > θcrit. The sigmoid shape
itself is a natural consequence of the normal distribution of v.
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Fig. 5: The transmission ratio (top), average latency (middle),
and average VoI (bottom), shown as functions of value thresh-
old, θ, for different PV panel areas A. The critical value θcrit
is indicated for the default parametrisation A = 2.2 cm2.

Below θcrit, we observe that fT increases slightly with θ. This
is caused by less energy being spent processing low-quality
events, since an increasing number of events are discarded
right after sampling due to their estimated low value-of-
information.

The middle plot shows how the average latency is fairly
insensitive to changes in threshold for θ ≪ θcrit, as the latency
is mostly driven by the amount of time it takes for the system
to have enough energy to transmit an event. This also explains
why the plot is dominated by noise for smaller values of A;
the low fT makes the system very sensitive to the randomness
in the VoI estimates. We recognise the same critical value θcrit
for each A: once θ is increased enough, the sensor enters the
energy-abundant mode in which τ̄ = 0.

We observe in the lower plot that v̄ generally increases
with θ. A smaller area A leaves the sensor forced to prioritise
more aggressively, also increasing v̄. As with the two previous
plots, all configurations reach the energy-abundant mode and
conform to the same line once θ > θcrit. We note that
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0
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2

n
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Fig. 6: The transmission ratio (top), average latency (middle),
and average VoI (bottom), shown as functions of buffer ca-
pacity, n, for different PV panel areas A.

some of the near-horizontal lines slope downwards, an effect
especially visible for the most energy-scarce configuration
(A = 0.7 cm2). This presumably has the same cause as the
slight upward slope seen in the upper plot—a slightly higher
number of events is transmitted, diluting the v̄ score. Another
explanation is that the policy may discard some events right
after sampling based on quite uncertain estimates of value
(σS = 0.3), which could lead to some high-value events being
discarded.

2) Buffer capacity: Figure 6 illustrates how each metric
responds to changes in buffer capacity. While fT predictably
increases with A, the upper plot emphasises the invariance
of the transmission ratio with respect to n. This is a natural
consequence of the greediness of the policy; the device will
at all points in time attempt to transmit as many events as
possible, which means that it is either limited by available
energy or event rate.

The middle plot demonstrates how the average latency
increases with n. Due to event prioritisation, an energy man-
agement policy with a large capacity will have a greater
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predisposition towards storing events for longer and sending
them out-of-order, generally increasing τ̄ . The policy will
transmit the best event at the earliest possible opportunity, as
such a larger A leads to a lower average latency.

As shown in the lower plot, an improved ability to prioritise
events causes v̄ to increase asymptotically with n towards a
saturation limit. Configurations with n = 0 may not prioritise,
resulting in v̄ ≈ E[v] = 0. The parametrisations with a smaller
A tend to give a higher v̄ since the events transmitted are much
fewer and more aggressively prioritised.

Comparing the middle and lower plot in Figure 6, there is
a clear trade-off between v̄ and τ̄ for a given value of A. In
fact, we observe that no buffer capacity is Pareto-dominated
by any other—fT is constant, and both v̄ and τ̄ are strictly
increasing with n.

C. Parameter analysis

We can draw certain design conclusions from the simula-
tions and analyses shown in this work. From an analytical
perspective, Eα can be useful measure to determine if the sen-
sor is operating in—or close to—the energy-abundant mode.
Furthermore, assuming the sensor has the ability to buffer and
prioritise packets, Figure 5 shows that if high latency can be
tolerated, a reduction in the PV panel area may lead to higher-
value data—although less of it.

1) Parameter space regions: Figure 7 depicts how the
three utility metrics are affected across the two-dimensional
parameter space of buffer capacity and value threshold. We
observe that the parameter space may be partitioned into three
regions with different trade-offs and considerations: A, with
θ < θcrit ∧ n ≥ 5; B, with θ < θcrit ∧ n < 5; and C, with
θ > θcrit.

• Region A: With fT and v̄ virtually constant, only τ̄
is sensitive to the parametrisation. As higher latency is
generally undesired, it is apparent that both reducing n
and increasing θ results in better performance.

• Region B: In this region, fT is almost constant while a
clear trade-off dependent on both n and θ exists between
τ̄ and v̄. This trade-off becomes less pronounced with
increasing θ.

• Region C: The system is permitted to operate in the
energy-abundant mode, meaning the design parameters
have little effect. The apparent trade-off between v̄ and
fT is a result of harsher thresholding—a higher θ will
only increase the amount of unspent energy.

2) Design examples: Returning to the specific scenario
of bridge monitoring, we demonstrate in the following how
parameter analyses may be performed, why such analyses can
be useful in the design of an energy management policy, and
how the specific application affects prioritisation of the utility
metrics.

We begin by considering a hypothetical design with (θ, n) =
(1, 10), marked by ‘+’ in Figure 7. The design resides in
region C, and is therefore operating in the energy-abundant
mode. During testing, the designer might perceive this abun-
dance of energy as a signal to spend more energy processing
additional vibration measurements to transmit, and therefore
reduces the threshold θ. If done without caution, the sys-
tem could unexpectedly move to region A with qualitatively
different behaviour. For instance, the sensor might suddenly
be starved of energy during the night, forcing it to ignore
high-value events such as urgent vibration measurements tied
to imminent structural failure. A design in region C may
also erroneously indicate that both buffering and threshold-
ing are unnecessary. The designer might in this case miss
an opportunity to obtain better-or-equal performance with
cheaper hardware (for instance a smaller photovoltaic panel),
and will therefore unnecessarily negatively distort the cost-
benefit analysis. Furthermore, once deployed, this hypothetical
design could harvest less energy or experience a higher-than-
expected number of events, violating the assumption of energy
abundance.

As a different example, we consider a device parametrised
by (θ, n) = (−1, 5), marked by ‘×’ in Figure 7. This
system resides on the boundary of region A, with τ̄ the only
metric significantly affected by the parametrisation. The local
insensitivity to θ at this point could suggest that thresholding
has no effect and that buffering is the main driver of latency,
when—in fact—a threshold increase could be quite beneficial
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due to a substantial reduction in latency once θ approaches
θcrit. The trivial approach of reducing n to reduce latency,
however, will inadvertently also cause a great reduction in v̄
once the system enters region B. This would be an undesirable
outcome for a bridge monitoring system, since a higher data
quality is arguably more important than a lower latency in this
context.

D. Limitations

Due to certain simplifying assumptions, the simulations
presented in this work have a few limitations. Firstly, only GHI
measurements from the summer months were used, thereby
disregarding seasonal differences in energy availability. Sec-
ondly, other effects could be modelled such as energy leakage
from standby power or an non-ideal accumulator. Thirdly,
there are quite a few parameters that were not investigated in-
depth, such as the task energy requirements (ES, EP, ET) and
the uncertainty of the value estimates (σS, σP). Lastly, the event
rate, λ, is assumed in this work to be time-invariant, although
it would presumably bear some correlation with time-of-day
in our bridge monitoring scenario.

V. CONCLUSIONS

Motivated by a desire to introduce cheap and energy-
efficient instrumentation for bridge health monitoring, we have
in this paper studied design parameters for energy management
of wireless sensors. The challenge of energy management is
not specific to this scenario, and we therefore formulated a
general model of an energy-harvesting wireless sensor in a
resource-scarce environment. Using a special type of vibration
event to measure bridge health, we proposed a simple energy
management policy for the wireless sensor to decide when
to sample, process, and transmit measurements. The policy
featured two key parameters: a value-of-information threshold
θ, and a buffering capacity n.

We introduced a simulation framework to analyse the utility
rendered by the sensor, and its dependence on environmental
and design parameters. Three utility metrics were chosen to
represent the performance of the system: the ratio of events
that were transmitted, fT, the average latency from sampling
to transmission, τ̄ , and the average value-of-information of
transmitted events, v̄. We then conducted a parameter sensi-
tivity analysis with a detailed evaluation of how internal and
external parameters affect each utility metric in the context of
bridge monitoring.

With the simple energy management policy chosen for this
work, we identified three distinct modes of operation: energy-
starved, energy-constrained, and energy-abundant. Resulting in
qualitatively different behaviours, these modes highlight how
even a simple energy management policy gives rise to complex
dynamics. It is therefore of utmost importance to have a solid
understanding of the parameter space when designing systems
for such resource-scarce environments, as the system may end
up operating in an entirely different mode after deployment
than was observed during the design phase.

In future work, we aim to demonstrate how the approach
introduced here may be applied in real-world scenarios, and
substantiate our results with data from systems in situ. Fur-
thermore, since the main strength of our method is how it
could be employed to dissect the performance of any policy
or wireless sensor system working within the confines of the
model presented, it would be interesting to conduct a review
of different energy management policies and wireless sensor
designs, and investigate how their parametrisations affect their
efficiency in different environments.
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